
Name : Ben Ayed Sabria.
Title : Variantes du théoème de Müntz-Szàsz sur les extensions compactes de certains groupes
de Lie nilpotents.
Position : "Professeure Agrégée principale" at IPEIS "Institut préparatoire aux études d’in-
génieurs de Sfax".
Date of defense : December 18, 2018.
Referees : Professor Samir Kabbaj (University of Kénitra, Maroc) and Professor Sundaram
Thangavelu (Indian Institute of Sciences, Bangalore).
Abstract : The Russian mathematician S. N. Bernstein (one of the greatest approxima-
tion theorists of the last century) asked under which conditions on an increasing sequence
Λ = (0 = λ0 < λ1 < ...) one can guarantee that the vector space

Π(Λ) := span{xλk , k = 0, 1, ...}

generated by the monomials xλk is a dense subset of C([0, 1]). Here C([0, 1]) denotes the
space of all continuous functions on [0, 1]. He especially proved that the condition∑

λk>0

1 + log λk
λk

=∞

is necessary and the condition

lim
k→+∞

λk
k log k

= 0

is sufficient, and conjectured that a necessary and sufficient condition to have Π(Λ) =
C([0, 1]) is

+∞∑
k=1

1

λk
=∞.

As a simple consequence, the monomials 1, x, x2, ... have dense linear span in C([0, 1]).What,
is so special about these particular powers ? How about if we consider polynomials of the
form

∑n
k=0 akx

k2 ; are they dense, too ? More generally, what can be said about the span of
a sequence of monomials (xλn), where λ0 < λ1 < λ2 < ...? Of course, we will have to assume
that λ0 ≥ 0, but it is not hard to see that we will actually need λ0 = 0, for otherwise each
of the polynomials

∑n
k=0 akx

λk vanishes at x = 0 (and then has distance at least 1 from the
constant 1 function, for example). If the λn are integers, it is also clear that we must have
λn →∞ as n→∞. But what else is needed ? The answer comes to us from Müntz in 1914
(see [?]). We sometimes see the name Otto Szàsz associated with Müntz’s theorem, because
Szàsz proved a similar theorem nearly the same time (1916).

Theorem 0.1 (Müntz, 1914) Let Λ = (λi)
∞
i=0, 0 = λ0 < λ1 < ..., be an increasing sequence

of positive real numbers. Then Π(Λ) = span{xλk , k = 0, 1, ...}, the Müntz space associated to
Λ, is a dense subset of C([0, 1]) if and only if

+∞∑
k=1

1

λk
=∞.
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This is a nice theorem because it connects a topological result (the density of a certain subset
of a functional space) with an arithmetical one (the divergence of a ceratin harmonic series).
Another reason to show the beauty of Müntz’s theorem is that the original result does not
only solve a typical problem but also opens the door to many new interesting questions. We
can mention the example of some tests to change the space of continuous functions C([0, 1])
to other function spaces such as Lp(a, b), or to consider the analogous problem in several
variables, on complex domains, on intervals away from the origin, for more general exponent
sequences, for polynomials with integral coefficients. As a consequence, many proofs and
generalizations of the theorem have been produced (For more details, we incite the reader
to see [?]. It is shown that the interval [0, 1] in Müntz’s theorem can be replaced by an
arbitrary compact set A ⊂ [0,+∞[ of positive Lebesgue measure. That is, if A ⊂ [0,+∞[ is
a compact set of positive Lebesgue measure, then span{xλ0 , xλ1 , ...} is dense in C(A) if and
only if

∑+∞
j=1

1
λj

= +∞. Here C(A) denotes the space of all real-valued continuous functions
on A equipped with the uniform norm. If A contains an interval then this follows from the
already mentioned results of Clarkson, Erdos and Schwartz. We can give a classical version
of the Müntz-Szàsz theorem in L2([0, 1]) where L2([0, 1]) denotes the vector space of square
integrable functions on [0, 1].

Theorem 0.2 For f ∈ L2([0, 1]) and {nk}+∞
k=0, a strictly increasing sequence of positive

integers, we have :

(1)
(∫ 1

0

xnkf(x)dx = 0 for any k ∈ N =⇒ f = 0 a.e.w
)
.

if and only if
(∑+∞

k=0
1
nk

= +∞
)
.

In the first chapter, my attention is focused on the generalization of this beautiful result
to encompass some classes of Lie groups. In this case, it is not clear what the equivalent
of monomials should be. In this context, Darwyn C. Cook considered a restrictive class of
nilpotent Lie groups that have a fixed abelian polarizer for the open set of representations
in general position. In these circumstances, the author produced a one-way Müntz-Szàsz
analogue for the matrix coefficients of the operator valued Fourier transform.

The purpose here is to generate and prove several analogues of Theorem 0.2 for Euclidean
motion groups G = SO(n)nRn(n ≥ 2) and for their universal coverings spin(n)nRn. To do
so, we are submitted to rephrase the condition of Theorem 0.2 above as an integral against
a monomial of a family of coordinate functions depending upon the parameters involved in
the spectrum of the Plancherel measure of G. We stated and proved a one way variant of
Müntz-Szàsz’s theorem. The motivation to seek another analogue comes from the fact that
we look at a converse result.
The second chapter aims to tackle the context of compact extensions of Heisenberg groups.
We propose a Müntz-Szàsz analogue for the matrix coefficients of the operator valued Fourier
transform. The goal was to prove an analogous for the semi direct product K nH, where K
is a compact subgroup of automorphisms of the Heisenberg group H. We have developed two
variants of the above theorem in the context of compact extensions of Heisenberg groups.
Here, it was necessary to use Müntz-Szàsz sequences in order to extend the classic Müntz-
Szàsz theorem for functions with arbitrary support (functions with support not necessarily
in R+). In particular, we treated the setting of Heisenberg groups.
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Chapter 4 concerns some variants of Müntz-Szàsz theorem for a class of compact extensions
of Rn, which are semi direct products K n Rn, where K designates a compact subgroup of
automorphisms of Rn. To achieve that, we thought firstly about looking for an analogue of
Müntz-Szàsz’s theorem for K = SOp(R) × SOp(R), where SOp(R) designates the special
orthogonal group and p, q are integers satisfying p+ q = n.
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